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ABSTRACT

The higher speeds and the larger device den-
sities in modern integrated circuits demand bet-
ter characterization of the electrical parameters
which can influence their performance. In this
paper, the importance of the skin-effect is exam-
ined, and an integral equation approach ‘is intro-
duced for the calculation of the ac resistance and
reactance.

INTRODUCTION

During the last few years, semiconductor
technology is pushing towards higher speeds and
larger device densities. As a result, we are mov-
ing towards pulses with risetimes faster than
one nanosecond, that is, signals with significant
power up to -2 GHz. It is then apparent that,
with metallization thicknesses below 10 ~m, the
skin depth becomes significant even at the up-
per end of the pulse spectrum. Up to now, the
loss calculations for high frequencies have been
primarily based on Wheeler’s incremental induc-
tance rule [1]. The requirement for Wheeler’s
theory to be applicable is that the cross-sectional
dimensions of the conductor are large compared
to the skin depth (-4 times the skin depth). This
theory no longer holds when the skin depth is in
the order of the metallization thickness, which
is the case of modern integrated circuits, espe-
cially at Iower frequencies (500 MHz - 1 GHz).
In this paper, an integral equation formulation
of the skin-effect problem is presented. The ob-
jective is to calculate the current distribution for
any arbitrary combination of conducting strips.
Once these distributions are found, the ac resis-
tances and inner reactance can be computed,
and can be used as input parameters to CAD
tools for the analysis of multiple coupled trans-
mission lines [2].

MATHEMATICAL FORMULATION

Let us consider the microstrip configuration
of Fig. 1. The conductors are parallel to the
z-axis and have magnet ic permeability y PO, an
electric conductivity a., and a cross section S.
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Fig. 1

(n=l,2,..., N). The conductors are carrying the
alternating currents i.(t) = 1. cos(wt + 4.) (n =

1,2,..., N), and are surrounded by an inhomoge-
neous dielectric with magnetic permeability MO.
For the special case of the two-dimensional con-

figuration, the current density has only one com-
ponent in the z direction, and the electric field
inside the conducting strip is given by

dV
EZ(Z, y) = –jUAZ(Z, U) – ~ (1)

where AZ(Z, y) is the magnetic vector potential
and V (z, y, z) is the electric potential. At any
point inside the conductor dV/dz is a complex
constant related to the specific choice of the refer-
ence for the magnetic vector potential [3]. From

J)1 using Ohm’s law we can derive the equation
or the current density for each point inside any

of the conductors,

dV
J. = –jwunA – on ~, n=l,2,. ... N (2)

where the subscript z has been dropped for sim-
plicity. If an aver;ge value of the m~gnetic vector

potential is defined over the cross-section of each

conductor by
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then the current density inside any of the con-
ductors is given by

J. = –jwonA + jwu~& + ~~, (4)

where 3. is the average current density distri-

bution in the nth conductor, that is, ~n = In/S.,

n=l,2

L

,..., N 4].
On the ot er hand, the magnetic potential at

any point (z, y) is given by -

A(z, u) = –~
I

J(z’, y’) In Rdz’dy’,
27r s

where R = {(z- z’)’+ (y-v’)’. It

S=fsn (5)
n=l

is now appar-

ent that substitution of (3),(5) in (4) results in an

integral equation for the current densities inside
the conductors.

The integral equation is solved numerically
using the method of moments. Of major im-
portance from a computational point of view is
the size of the matrix which results from the ap-
plication of the method of moments. Since the
dimension of the matrix is proportional to the
number of subintervals used in the discretization
of the cross sections of the conductors, it is ap-
parent that extra caution is needed in the way
that this discretization is performed in order to

keep the size of this matrix as small as possible,
while preserving the accuracy of the numerical
solution. For example, as the frequency of in-
terest increases, most of the conductor current
concentrates close to the surface and very little
flows inside the conductor. This then suggests
a nonuniform discretization of the cross section
with a mesh that is denser close to the surface of
the conductor.

NUMERICAL RESULTS
Once the current distributions have been

found, the computation of the ac resistance of
the n’~ conductor is straightforward,

(6)

Our preliminary results are for the case of a sin-
gle strip of rectangular cross section. In Fig.2 the
computed ac resistance normalized to the dc re-
sistance is shown as a function of the normalized
frequency fP = ~- with the shape factor a/b

as parameter. The solid lines show the mea-

sured alternating current resistances published
by Haefner [6 .

I
We see that the agreement with

our numerics results is excellent, and this con-
firms our theoretical formulation.
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